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Abstract— Face recognition in surveillance situations usually
requires high resolution face images to be captured from
remote active cameras. Since the recognition accuracy is typ-
ically a function of the face direction – with frontal faces
more likely to lead to reliable recognition – we propose a
system which optimises the capturing of such images by using
coarse gaze estimates from a static camera. By considering
the potential information gain from observing each target,
our system automatically sets the pan, tilt and zoom values
(i.e. the field of view) of multiple cameras observing different
tracked targets in order to maximise the likelihood of correct
identification. The expected gain in information is influenced
by the controllable field of view, and by the false positive and
negative rates of the identification process, which are in turn a
function of the gaze angle. We validate the approach using a
combination of simulated situations and real tracking output to
demonstrate superior performance over alternative approaches,
notably using no gaze information, or using gaze inferred from
direction of travel (i.e. assuming each person is always looking
directly ahead).We also show results from a live implementation
with a static camera and two pan-tilt-zoom devices, involving
real-time tracking, processing and control.

I. INTRODUCTION

The accuracy of face recognition in high resolution images

has improved steadily over recent years [18], however in

common with most other methods for biometric identifica-

tion, cooperation from the subject is needed to acquire the

required measurement. The ability to automatically capture

high resolution face images from a remote camera would

allow face recognition systems to be deployed in surveillance

situations where people are free to move without constraint.

When only a single person is being monitored, an active

camera can simply follow them until the required image is

captured, but when multiple persons are present the camera

controller must make a decision about which target to follow.

Since a face image can only be captured when a surveillance

subject looks towards the observing camera, advance knowl-

edge of where the people in a scene are looking can be used

to guide the choice of person for an active camera to follow.

In this paper we show how to use gaze estimates from

a static camera to optimise the control of one or more

active cameras with the aim of maximising the likelihood

that the surveillance subjects will be correctly identified. In

particular we make three main contributions. First, we show

how methods for tracking and control based on expected

mutual information gain can be naturally extended to make

use of gaze information. Second, we then demonstrate that

the use of the (noisy) gaze data is indeed beneficial, yielding
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improved performance over no knowledge of gaze, or the

first-order approximation that a person’s gaze direction and

their direction of motion are always the same. Finally, we

demonstrate a real-time implementation with a static camera

and two pan-tilt-zoom devices, involving real-time tracking,

processing and control.

II. RELATED WORK

To date a significant body of research has taken the

approach of using static cameras to guide the control of

active cameras in distributed visual surveillance systems.

Marchesotti et al. [16] used tracking in a single static

camera to guide an active camera to capture face images. A

similar approach was used by Hampapur et al. [13] but with

multiple active cameras. Qureshi and Terzopoulos [19] and

Costello et al. [6] looked into the planning and scheduling

aspect of target acquisition, drawing from a router analogy.

Bagdanov et al. [2] uses reinforcement learning to explore

the action space of the control problem, and Del Bimbo and

Pernici[8] approached this using the kinetic travelling sales-

man problem. However, mainly fixed rules are used to decide

which cameras should follow which targets, including those

which favoured targets walking towards observing cameras

to maximise the chance of detecting a face, neglecting the

uncertainty in the sensing process. Whereas above papers

used geometric insight, others suggested cinematographic

rules [10] and analogies to mechanical forces [1].

The emphasis of this work is on the objective function,

not the planning stage, as we are interested in the influence

of gaze estimation, and the use of uncertainty in the sensing

process. Greiffenhagen et al. [12] modelled probabilistically

the uncertainty in target tracking and positioning of active

cameras to obtain camera parameters guaranteeing given

quality bounds on tracking the target. Tordoff and Mur-

ray [24] derived similar results for tracking targets with

a Kalman filter. Denzler et al. [9] showed how to phrase

this control target using entropy as an objective function.

More recently, Sommerlade and Reid [22] extended this

information-theoretic approach to tracking multiple targets

with multiple cameras, where the goal of maximising mutual

information between targets and observations results in the

desired allocation and swapping of targets between cameras,

a behaviour which emerges without being explicitly speci-

fied.

The approach described in this paper is unique in using

coarse gaze estimates to optimise camera allocation. Previous

work on coarse gaze estimation has covered only a few

application areas such as attention measurement in surveil-

lance situations [21], [14], [4], providing speaker feedback
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for presentations [11] and identifying the focus of attention

of drivers [17] and meeting participants [20], [23].

III. STATIC CAMERA TRACKING AND COARSE GAZE

ESTIMATION

The static camera tracker uses the approach of Benfold

and Reid [4] who tracked the heads of pedestrians using a

combination of sparse optical flow measurements from KLT

feature tracking [15] and head detections using Dalal and

Trigg’s HOG detection algorithm [7] trained on cropped head

images. In each frame of video, the sparse optical flow from

the previous frame predicts the head location and the head

detections provide absolute observations which are combined

with the predictions using a Kalman filter. The resulting

location estimates provide stable head images which are

used for gaze estimation (see figure 11, top row). The 2D

image locations are converted into a 3D location estimates

by assuming a mean human height of 1.7 metres using the

camera calibration with a ground plane assumption.

Coarse gaze estimates are made using randomised ferns,

a simplified form of randomised trees. The ferns use binary

tests based on gradient directions and colour comparisons

to index a leaf node containing a probability distribution

over eight direction classes, of 45o each, thus covering

the full range of 360o. To avoid having discrete direction

estimates, a Gaussian Parzen window density estimate is

used to interpolate the most likely angle. The resulting

gaze estimates as well as target positions are mapped to a

coordinate system common to all cameras.

We evaluated the accuracy of the gaze estimation. The

classifier was trained on 1475 cropped images harvested from

the web and manually annotated. The testing set comprises

4347 head detections resulting from automatic tracking on a

video sequence. The mean absolute angular error is 38.275

degrees. Figure 1 shows the distribution of errors p(g−γ) for

detected angle g and ground truth γ, along with a maximum

likelihood fit to a von Mises distribution (see section IV-B).

IV. CAMERA CONTROL

We base our control method on the following observations.

Targets that are known to the system are also said to be

“enrolled”. The simplest output of a system is a truth value d

indicating whether the target is enrolled or not, and the

only probabilistic feedback is the identification performance

of the system (given actual enrollment value e), which

yields the percentage of false positives and false negatives.

Furthermore, typical identification systems have a better

performance when the target’s face is captured frontally. For

example, a recent method [5] first looks for frontal face

Fig. 2: Top-down view of

camera in direction α (red)

facing a target with mean

gaze γ, yielding an angle of

incidence a.

detections, and then tries to identify the captured frames.

We denote this ideal identification performance as p0(d|e).

A. Information theoretic Approach

Our control objective takes into account the uncertainty of

the sensing process in the identification system, as well as

in the tracking part. For each camera, we want to observe

the target that is expected to provide the most information

about its identity. This criterion can be expressed in terms of

mutual information between the target’s state e and the ob-

servations d, which depend on the camera orientation α. This

information is the difference between the current uncertainty

about the target’s identity and the remaining uncertainty after

it has been observed:

Iα = H(e)−Hα(e|d) (1)

= ∑
d,e

pα(e|d)p(d)(log pα(e|d)− log p(e)) (2)

where the uncertainties are expressed by (Shannon) entropy

and conditional entropy, correspondingly. The best parameter

is then the observation angle that provides maximal infor-

mation. The resulting objective function follows unidentified

targets as long as they provide more information than other

targets. We now derive the required likelihoods that con-

tribute to the objective function.

B. Observation Likelihood

Figure 2 shows a top-down schematic of a camera viewing

a single target with an estimate about its gaze g at an

estimated position y, resulting in the angle of incidence a. To

model the identification process, we maintain a (latent) belief

state e, representing whether the target is enrolled (e = 1),

or not (e = 0). We model the identification process via the

conditional likelihood of successfully identifying a target,

p(d|e,a), which is specified in terms of the true positive and

negative rates of the system. This is a function of the angle

of incidence a. The indicator variable d is the binary event

of a successful identification measurement from the system,

and a = α− g is obtained from the camera’s direction and

the target’s gaze estimate.

More specifically, in our notation, the system’s true posi-

tive rate with respect to the angle of incidence of the subject’s

gaze is denoted as p(d = 1|e = 1,a). The distributions over

e, p(e), p(e|d) are then interpreted as the prior and posterior

belief whether the target is known to the system or not.

At any instant, our model requires a distribution p(g) over

the direction of the target’s gaze. We obtain the maximum

likelihood gaze direction from a gaze detection method [4]

(also briefly summarised in section III). We model the un-

certainty of the gaze direction with a von Mises distribution:

p(g) = fp(g;γ,κg) = eκgcos(g−γ)/Zg (3)
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Fig. 3: Left: Sample model of detector performance over

angle of incidence a. Green: true positive identification like-

lihood, κ1 = 8/π, true positive rate: 0.90. Red/dashed: true

negative identification likelihood, true negative rate: 0.75.

Blue/dash-dotted: sample distribution over gaze direction g.

Right: Detector performance and mutual information for

targets placed in a circle around the camera, each with the

same distributions over gaze directions as in the left figure.

Green: true positive identification likelihood. Black/dash-

dotted: resulting information gain.

which has a mean direction γ, angular covariance κg and

a normalisation constant Zg. The spread κg is determined

from the empirical performance of Benfold’s algorithm by a

maximum likelihood fit to the estimation errors presented in

section III. The resulting mean and angular spread are 212

and 14 degrees.

With an orientation of the camera of α, the angle of inci-

dence a is given as a = g−α. Note that we assume perfect

knowledge of the cameras’ intrinsic and extrinsic parameters

(which is realistic given accurate internal calibration and pan-

tilt encoder feedback), otherwise the uncertainty in the angle

α had to be included in the following derivation.

If a target is known (e = 1), we assume that the detection

performance for all viewing angles is unimodal and is

modelled by a similar function as in equation 3:

f (a) = exp(κa cos(a+π))) (4)

The likelihood of successfully making a correct classification

(d = e), given performance p0(d|e) (for a frontal view) and

incidence angle a is

p(d|e,a) = (p0(d|e)− ε) f (a)+ ε. (5)

The likelihood of an incorrect classification is then p(d =
i|e =¬i,a) = 1− p(d = i|e = i,a) i ∈ 0,1. An example for the

resulting identification performance can be seen in figure 3

for ε = 1/2. We will return to this constant in the next section.

We obtain the resulting expected detection likelihood –

depending on the camera’s angle α – by marginalising out

the gaze direction g:

pα(d|e) =
Z

0..2π
p(d|e,a)p(a)da (6)

This integral has no closed form solution, but can be eval-

uated trivially for a discrete number of angles (we choose

256). Figure 3(left) shows the expected detection likelihood

for a set of targets surrounding the camera.

Regarding the identification process, we now have all

elements in place for evaluation of mutual information in

Fig. 4: Surface of mutual

information for varying an-

gles and minimum perfor-

mance setting ε. The mu-

tual information for a min-

imum confusion of ε = 1/2
is highlighted in white.

equation 2. It is shown in figure 3(right) for a set of targets

surrounding the camera. The constant ε in equation 5 now

can be understood as the minimum confusion of the classifier.

It addresses the fact that the system should be the least

certain, or “blind”, when the target is facing away. If the

likelihood of identifying the target as belonging to the system

was zero at this angle, the classifier would be confident about

the target class, and provide information. The influence of

this threshold on the mutual information is shown in figure 4

for a performance of the classifier of p(d = e|e) = 0.9. When

the target faces away (a = 0), the identification yields a

mutual information of 0 for ε = 1/2.

The development so far does not take into account the

limited field of view of each camera, which influences

the expected visibility of each target. To address visibility,

we consider the position y of the target, which influences

the chance of actually making an observation o. In our

formulation, this target position does not influence the actual

identification capability pα(d|e), but only the chance of

observing the target, i.e. how likely it is to actually capture

a bounding box containing the face of the target for a given

camera angle.

The expected visibility of the target in the camera’s field

of view is a scalar

wα =
Z

Ω(α)
p(o)do, (7)

where the integral is over the field of view Ω(α) of the

camera which is a function of the of the chosen camera

viewing angle α and its zoom value. We model the position

of the target using a Gaussian, as would result from tracking

using a Kalman filter, and linearise the projective transform

so that the observation likelihood is a Gaussian, too. The

integral in equation 7 has a simple solution in the form of

the error function. This formulation of visibility is inspired

by [9], and further details can be found there.

The conditional entropy information term for a target,

observed by a single camera, becomes

Hα(e|y,d) = −
Z

y∈Ω(α)
p(y)Hα(e|d)dy (8)

−
Z

y/∈Ω(α)
p(y)H(e)dy (9)

= wαHα(e|d)+(1−wα)H(e) (10)

From this results the mutual information for a target:

Iα(e;d,y) = H(e)−Hα(e|y,d) = wαIα(e;d) (11)

An example is given in figure 5. Note how the mutual

information gain drops towards the boundary of the camera’s
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Fig. 5: Different information gains for target positions and

views. A camera (centre) surrounded by hypothetical targets,

with orientations towards (left), and away from the cam-

era(right). The resulting information gain is proportional to

the radius of the circle on each target. The targets facing

away from the camera still yield an information gain due to

the uncertainty in the gaze estimate.

field of view. The cutoff at the edge of the field of view

is more pronounced with a smaller covariance of the target

position. As the actual target position and its uncertainty

is taken into account, even a target outside of the field of

view of the camera yields an information gain, because the

uncertainty in its position means there is a chance that it

is in fact in the field of view and will be observed. After

each report of a successful or unsuccessful identification, we

update the hidden target state p(e|d) using Bayes’ rule and

propagate this to the next observation period as the prior p(e)
(i.e. Markovian assumption). This results in a diminishing

return for longer observation of the same target once it

has been identified. Again, if the employed identification

system had a perfect identification performance, the resulting

probability p(e = 1|d) would be either 1 or 0. Such target

state yields an information gain of zero, and would not be

considered by the control method any more.

An example based on real data is given in figures 6,

7 and 8, where three targets are on different trajectories

1

2

3

Fig. 6: Example view of the data set and camera positions

used for evaluation, including three trajectories used for

visualisation in the next plots (best seen in colour), and a

camera located in the top left corner. The camera observes

targets with varying orientations: towards the camera (blue,

2), away from the camera (red, 3), and slowly turning away

from the camera (green, 1).

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

time/frames

M
I/
n
a
ts

(a) p(e) constant

5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

time/frames

(b) p(e) updated

Fig. 7: The left graph shows the mutual information gain

from each target for a constant, indiscriminate belief p(e).
Target 1 is green, target 2 blue/dash-dotted, and target 3

red/dashed. Plot 7b visualises the mutual information gain

when constantly updating the belief according to simulated

detections. Target 1 yields more information gain than tar-

get 3 from frame 5 onwards.

with different gaze directions and yield different information

gains for longer observations. Targets are observed from a

constant camera position and view angle, and observations

generated according to the performance of a given detector

model (using the same parameters as for the example in

figure 3). We repeat the observation process for 100 trials

and report average performance. The graph 7a shows how

only the target with a frontal view towards the camera is

selected if the belief state is not updated. However, graph 7b

shows how the second target provides more information

after a number of observations, as the first target has been

observed long enough. This amount of observations depends

on the system’s performance (e.g. for a perfect identification

a single observation suffices), and the actual result of the

observations. The curves 8a and 8b show the development

of the successful identification of the targets, p(e = 1). Note

how for target 2 this converges rapidly towards 1, whereas

the target 1 requires more observations. The state of the third

target remains uncertain, as it is never facing the camera.

Lastly, we extend our method to several cameras by greedy

assignment of targets. All cameras are ordered, and target

selection is performed sequentially for each camera. Targets

that have been chosen by cameras before are updated by

the expected observation of their corresponding camera. This

discounts multiple observations of the same target.
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Fig. 8: Development of the belief state p(e = 1) for each of

the targets.
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Fig. 9: Performance comparison for camera control using

gaze estimates. The detection performance is imperfect, and

modelled as in figure 3. Left: percentage of frames where

a target has been observed at an angle less than α. Right:

percentage of targets observed at least once.

V. RESULTS

To compare different methods in a fair manner, they

should be exposed to the same input data. We choose to use

simulation to obtain quantitative and comparable results for

different algorithms, and implemented one of the methods

in a live system to show the feasibility and qualitative

performance of the control method. The recorded images

are currently not fed into an actual identification system,

which removes any bias from this end. Instead, we posit that

frontal images provide better identification performance, and

a control method that captures more frontal views should

benefit any identification system.

A. Quantitative Evaluation

To obtain quantitative results, we use simulation based on

ground-truth data. The data set we use comprises manually

tracked and labelled gaze directions from a typical high

street, where pedestrians are expected to visually explore

the shopping windows. It consists of 75 individual targets

in 1500 frames (50s).

A virtual camera is placed at the periphery of all trajecto-

ries, such that all targets are visible from this position. We

run the simulation for 18 different placements of the virtual

camera and report the average performance for the methods.

The setup is shown in figure 6.

For each frame and each target visible, we evaluate the

expected information gain in equation 11 for a camera setting

that centres this target in its own field of view. The camera

is then directed to fixate the target which maximises the

(expected) information gain.

In order to evaluate the efficacy of our approach using

information gain together with gaze, we compare against a

variety of other possibilities: (i) the full system uses gaze

estimates, together with an update of the latent belief state

using Bayes’ rule at every frame (denoted mi+gaze+prior);

(ii) without a recursive update of the latent belief state, but

still using gaze estimates (mi+gaze); (iii) recursive update

of the belief state but using target motion direction as an

approximation of gaze direction (mi+prior); (iv) no recursive
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Fig. 10: Left: percentage of frames where a target has been

observed at an angle less than 15◦, for varying delay between

target selection and evaluation. Right: percentage of targets

that have been observed at least once at an angle less than

15◦.

update of the belief state, and using target motion direction

as an approximation of gaze direction only; and (v) as a

baseline method, we also choose a target at random.

As a metric of the performance we count how often the

chosen target looks into the camera in the next frame. We

determine this by thresholding the difference between the

target’s actual gaze and the camera’s view direction. We also

count the number of targets that have been looking into the

camera at least once. This would be the metric for a perfect

identification system, as each target could be identified from

this single observation.

We performed two experiments. The first experiment mea-

sures how much the control methods influence the number of

frontal faces captured. For this, we vary the threshold for the

observation angle and keep the other parameters fixed (κ2 =
40/π, detector parameters as in figure 3, delay 1 frame).

Figure 9 shows the results. Whereas the random selection

method observes roughly as many unique targets as the

proposed method, the overall number of frontal observations

is far smaller. Note that updating the identification belief

state recursively over time increases the number of uniquely

observed targets. This is because the mutual information gain

decreases with the number of observations of the same target,

thus favouring a change of target even though the current

target might still face the camera frontally. The performance

of the random method is only better if all of the captured

images are sufficient to identify the targets – i.e. for a

perfect identification system. For such a system, the mutual

information gain would be 0 after the first observation, and

our proposed method would trigger a faster change of targets,

gathering more unique observations.

The second experiment shows the dependency on the

temporal delay in the control. After a target has been selected

by one of the objective functions, we assume that the

positioning of the camera takes a number of frames, fixed

for every chosen movement, and during this time no target

can be sensed. We vary the delay between one and fifteen

frames, which corresponds to 1/30s to 1/2s. Figure 10 shows

the average number of persons observed over all viewing

angles. The standard deviation for the mutual information

based approaches is about σ = 0.16, and for the random



selection σ = 0.05, which shows that there is a statistically

significant performance improvement when using the gaze

based performance, even for a delay of up to half a second

in the control method.

The right graph in figure 10 shows the relative number of

unique observations for each of the methods. The shaded area

depicts the standard deviation of the random selection and

the method of mutual information gain from gaze estimates

plus updated prior (red/dash-dotted).

As the random selection method does not prioritise targets,

it is more likely that targets are selected that do not face the

camera or disappear before they can be observed. However,

all mutual information based methods perform worse for a

longer delay, as it is more likely that the target turns away.

B. Live System

To test the feasibility of our approach, we implemented a

live system based on the architecture presented in Bellotto

et al. [3], which consists of a network of active cameras and

static cameras sharing information via an SQL database. A

static camera runs the gaze tracker, and two active cameras

are controlled according to the information gained without

update of priors. The parameters of the active cameras are

pan, tilt and zoom; we exploit the zoom capabilities by

allowing the camera to look at several targets at the same

time. Instead of selecting a single target with maximum

information gain as in the previous section, we vary the

parameters for each camera, and sum the information gain

from each target observed. A full search of a discretised

parameter space runs at two frames per second per camera.

Sample frames from the live system are shown in figure

11. The full video is part of the supplemental material. The

cameras follow the targets, keeping those targets centred that

look into the camera.
VI. CONCLUSIONS

This paper presents an extension of mutual information

based tracking of targets by integrating a target’s gaze direc-

tion. Evaluation based on real data shows that the inclusion

of gaze estimates results in more targets captured frontally,

which will benefit identification systems.

We choose the von Mises distribution as it is a closed

approximation to the wrapped normal distribution and com-

putationally tractable. A further extension of the approach

presented here could take into account the varying perfor-

mance of face detections and classifications resulting from

a height difference between the supervised target and the

camera. If the camera is located above, yet close to the target,

the resulting observations will likely show the top of the

head only, and not necessarily support identification. This

can be addressed by fitting an appropriate distribution to the

performance of an identification method, e.g. a von Mises-

Fisher distribution, which is able to model non-isotropic

covariances. The integral in equation 6 is then extended

to spherical angles, and the remaining derivations follow

correspondingly.

In the current implementation of the live system, there is

no incentive in the objective function to increase the zoom

of the camera. Not only does this reduce the likelihood

of making an observation (the field of view in equation 7

is smaller), but as mutual information is never negative,

the inclusion of any target in the field of view will result

in a higher mutual information gain, unless other targets

become less likely to be observed successfully. This, of

course, neglects the intuition that higher resolution faces

should yield greater identification success. Within the present

framework this could be modelled naturally by introducing

a dependence of the identification process success rate on

the zoom value. As the zoom increases, the false positive

and negative rates would drop, resulting greater potential

information gain, thereby providing pressure for a camera

to zoom in. This is an obvious direction for future work.
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